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ABSTRACT

THERMAL RECTIFICATION BEHAVIOUR OF SOME SMALL QUANTUM
SYSTEMS

ZERVENT, SELAHİTTİN ATILAY
M.S., Department of Physics

Supervisor: Prof. Dr. Sadi Turgut

September 2021, 44 pages

Thermal rectification behaviors for some small quantum systems are studied by us-

ing the Lindblad master equation. From the underlying Hamiltonian dynamics of

the composite quantum systems consisting of small quantum systems and reservoirs,

Lindblad master equations are obtained by using certain approximations. Optimum

operation parameters are determined for a single two-level and two two-level quantum

systems. It is shown that there is no thermal rectification behavior when the contact

between two reservoirs is a single harmonic oscillator or two harmonic oscillators

Lindblad master equation and Hamiltonian dynamics is used separately to show that

the zero rectification is due to the linearity of the dynamics of the oscillators and it

is not the result of the approximations made when the Lindblad master equation is

obtained.

Keywords: Lindblad master equation, thermal rectification, thermal diode, Ising cou-

pling, Heisenberg coupling
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ÖZ

BAZI KÜÇÜK KUANTUM SİSTEMLERİN ISIL DOĞRULTMA
DAVRANIŞLARI

ZERVENT, SELAHİTTİN ATILAY
Yüksek Lisans, Fizik Bölümü

Tez Yöneticisi: Prof. Dr. Sadi Turgut

Eylül 2021 , 44 sayfa

Bazı küçük kuantum sistemleri için ısıl doğrultma davranışları Lindblad denklemi

kullanılarak incelenmiştir. Küçük kuantum sistemleri ve rezervuarlardan oluşan bile-

şik kuantum sistemlerinin altında yatan Hamilton dinamiklerinden, belirli yaklaşım-

larla Lindblad denklemleri elde edildi. Tek bir iki seviyeli ve iki iki seviyeli kuantum

sistemleri için optimum çalışma parametreleri belirlendi. İki rezervuar arasındaki te-

mas olarak harmonik osilatör ve iki harmonik osilatör için ısıl doğrultma davranışının

olmadığı gösterilmiştir. Sıfır doğrultmanın Lindblad denklemini elde ettiğimizde yap-

tığımız yaklaşımların sonucu olmadığını göstermek için Hamilton dinamiğini kullan-

dık.

Anahtar Kelimeler: Lindblad denklemi, ısıl doğrultma, ısıl diyot, Ising etkileşmesi,

Heisenberg etkileşmesi
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CHAPTER 1

INTRODUCTION

Humankind has recently begun to exploit quantum nature. The ability to manipulate

individual molecules, atoms, and spins have led to the emergence of quantum devices.

However, those quantum devices are not isolated systems but open quantum systems

which thermally interact with their environment. The stored quantum information

leaks into the environment as the state of the system gradually approaches the thermal

equilibrium state which is determined by the temperature of the environment. There-

fore controlling the quantum devices also requires controlling their interaction with

the environment. Thermal control in the nanoscale requires systems on nanoscale

whose behaviors are governed by quantum mechanics. Therefore there is a need to

study the thermal behaviour of quantum systems. Recently, such studies have been

done[1, 2, 3, 4, 5, 6].

In this thesis, some basic well-known quantum systems are investigated for their ther-

mal rectification behaviors when they are simultaneously in contact with two oth-

erwise non-interacting thermal baths in the search for a possible quantum thermal

diode. A thermal diode is the thermal analog of the electrical diode, which allows

current to flow in one direction and restricts it when the opposite voltage difference

is applied. In the thermal diode, heat is allowed to be transferred in one direction but

restricted in the other direction.

Of course there is no rectification in the linear regime when the temperature difference

between the reservoirs is small. For this reason, large temperature differences are

treated in all of the calculations. For such large temperature differences, the steady-

state quantum state of the thermal contact may diverge significantly from a canonical

1



thermal equilibrium state. For this reason, exact calculations of the state of the contact

are necessary.
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CHAPTER 2

LINDBLAD MASTER EQUATION

2.1 Density Matrices

Since we will deal with the thermal properties of quantum states, we have to deal with

their statistics. And in order to characterize the statistical properties of a quantum

system, we will use a density matrix.

Consider an ensemble of quantum states, each with its state vector. If we want to find

the expectation value of an observable A, we have

〈A〉 =
∑
α

nα
N
〈ψα|A|ψα〉 , (2.1)

where nα is the number of elements in the ensemble having state vector ψα. Inserting

an identity operator, we have

〈A〉 =
∑
α,i

nα
N
〈ψα|A|φi〉〈φi|ψα〉 =

∑
α,i

nα
N
〈φi|ψα〉〈ψα|A|φi〉 , (2.2)

where φi’s are orthonormal state vectors in an arbitrary base. If we define density

matrix ρ as

ρ =
∑
α

pα|ψα〉〈ψα| (2.3)

where pα’s are the classical probabilities of an element in the ensemble to be in state

ψα,

pα =
nα
N

. (2.4)

Then the expectation value of an observable becomes

〈A〉 = tr(Aρ) . (2.5)
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Note that the state vectors can be represented in a particular basis as

|ψα〉 =
∑
i

〈φi|ψα〉|φi〉 =
∑
i

cα,i|φi〉 . (2.6)

Then the density matrix can be represented as

ρ =
∑
α,i,j

pαcα,ic
†
α,j|φi〉〈φj| =

∑
i,j

ρi,j|φi〉〈φj| . (2.7)

Therefore when the density matrix is represented in a particular basis, there are two

probabilities to consider for the diagonal elements, the classical probability of the

state to be the particular state in the ensemble, pα and the quantum probability of

that particular state to be in the base state, |cα,i|2. The multiplication gives us the

overall probability of finding the state in φi. Also, note that when we consider the

density matrix in the energy basis, the diagonal elements of the matrix gives us the

probabilities to find the state at the corresponding energies, therefore for a system in

thermal equlibrium, there is no particular state for the system but particular diagonal

elements of the density matrix. Therefore we need to work in the density matrix

representation.

2.1.1 Composite systems

A system that consists of more than one quantum system is called a composite quan-

tum system. Let us assume that a composite system is formed by a bath(B) and a sys-

tem(S) coupled to it. When we want to find the expectation value of operator A(S) for

the coupled system, we need to find the expectation value of the operator A(S)⊗ I(B)

where A(S) acts on the coupled system’s Hilbert space and identity operator I(B) acts

on the bath’s.

Density matrix can be written as

ρ =
∑
i,j,k,l

ρij,kl|aibj〉〈akbl| , (2.8)

where

|aibj〉 = |ai〉 ⊗ |bi〉 , (2.9)

|ai〉’s are in the system’s Hilbert space and |bj〉’s are in the bath’s Hilbert space,

4



|aibj〉’s are in the composite Hilbert space and |ai〉,|bi〉,|aibj〉 are all orthonormal

states. Then partial trace

ρs = trB(ρ) (2.10)

becomes

ρs =
∑
i,j,k,l

ρij,kl〈bj|bl〉|ai〉〈ak| =
∑
i,j,k

ρij,kj|ai〉〈ak| . (2.11)

We use partial trace to characterize the statistics of a subsystem from the density

matrix of the composite quantum system[7].

2.1.2 Time evolution of a density matrix

To obtain the time evolution of ρs in equation 2.10, we first write the Schrödinger

equation for an arbitrary state |ψ〉 in the composite system’s Hilbert space.

i~
d

dt
|ψ(t)〉 = H|ψ(t)〉 , (2.12)

where H is the Hamiltonian for the composite system. We can define the time evolu-

tion operator U as

U(t, t0)|ψ(t0)〉 = |ψ(t)〉 . (2.13)

Since |ψt0〉 is time-independent, the Schrödinger equation reduces to

i~
d

dt
U(t, t0) = HU(t, t0) (2.14)

for the time evolution operator, which results in

U(t, t0) = e−i
H(t−t0)

~ . (2.15)

Since

ρ(t0) = pα |ψα(t0)〉 〈ψα(t0)| , (2.16)

the density matrix time evolution is therefore

ρ(t) = U(t, t0)ρ(t0)U †(t, t0) . (2.17)

And from equation 2.15, the time derivative of the density matrix is

ρ̇(t) = − i
~

[H, ρ(t)] . (2.18)

5



And for the coupler system

ρ̇s(t) = trB(− i
~

[H, ρ(t)]) . (2.19)

Unfortunately this equation cannot be used in that form. In most of the cases, we are

interested in the system only and we only know ρs. As a result, the right-hand side

must be expressed entirely in terms of ρs. This cannot be done exactly. Therefore

some approximations have to be used. If the right-hand side is expressed only in

terms of a linear function of ρs at time t, then the equation is called a Markovian

equation. In this approximation, all future values of the density matrix depends only

on any chosen initial state (and not on any prior states).

2.2 Lindblad Master Equation from the Hamiltonian Dynamics

The dynamics of an open quantum system, in general, can not be represented with

a unitary time evolution which does not explain the irreversibility, entropy increase,

or relaxation to equilibrium. It is, instead, represented by a master equation for its

density matrix. The dynamical map governed by the master equation should be a

completely positive trace-preserving map to ensure that the time evolved density ma-

trix conserve the properties of a density matrix. Moreover, if we neglect the memory

effects in the evolution(We assume reservoir correlation functions decay so rapidly

than the systematic evolution of the system), we can show that the master equation is

in the Lindblad form[8].

ρ̇s(t) = − i
~

[H, ρs(t)]

+
N2−1∑
k=1

γk

[
Akρs(t)A

†
k −

1

2

{
A†kAk, ρs(t)

}]
,

(2.20)

where Ak’s are jump operators. Since equation 2.19 is generally very complicated to

deal with, by making some approximations, we will obtain a master equation in the

Lindblad form in which we obtain the jump operators from the underlying Hamilto-

nian evolution.

Following the footsteps of a classical textbook[8], we start with the time evolution of

6



the density matrix in the interaction picture for the whole system. The Hamiltonian

of the whole system is

H = HS +HB +HI , (2.21)

where HS is the system Hamiltonian, HB is the bath Hamiltonian, and HI is the

Hamiltonian of the interaction between bath and the system. We write the Hamilto-

nian as

H = H0 +HI , (2.22)

where

H0 = HS +HB (2.23)

is the unperturbed Hamiltonian and the interaction term, HI , can be written as

HI =
∑
α

Aα ⊗Bα , (2.24)

where Aα and Bα are Hermitian operators where the former acts on the system and

the latter acts on the reservoir. Here our aim is to relate the jump operators to Aα’s.

The time evolution operator in the interaction picture is defined as

UI(t, t0) = U †0(t, t0)U(t, t0) = eiH0
(t−t0)

~ e−iH
(t−t0)

~ , (2.25)

and the interaction picture state ket

UI(t, t0)|ψ(0)〉 = |ψ(t)〉I , (2.26)

which makes the interaction picture density matrix as

ρI(t) = UI(t, t0)ρ(t0)U †I (t, t0) . (2.27)

Because

i~
d

dt
UI(t, t0) = HI(t)UI(t, t0) , (2.28)

where

HI(t) = U †0(t, t0)HIU0(t, t0) , (2.29)

the time derivative of the density matrix in the interaction picture becomes

ρ̇I(t) = − i
~

[HI(t), ρI(t)] . (2.30)
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When equation 2.30 is integrated, the resulting density matrix as a function of time is

ρ(t)I = ρI(0)− i

~

∫ t

0

[HI(s), ρ(s)] ds . (2.31)

It could be substituted in equation 2.30 to obtain the time derivative of the density

matrix again,

ρ̇I(t) = − i
~

[HI(t), ρI(0)]− 1

~2

∫ t

0

[HI(t), [HI(s), ρI(s)]] ds . (2.32)

HI in the interaction picture is

HI(t) =
∑
α

Aα(t)⊗Bα(t) . (2.33)

If we apply the Born approximation for the density matrix by assuming the coupling

between the system and reservoir is small enough to assume that the reservoir excita-

tions are not affected by the system

ρI(t) = ρIs(t)⊗ ρB , (2.34)

and use equation 2.32, equation 2.33 has the following form

ρ̇Is(t) =
∑
α

(Aα(t)ρIs(t)− ρs(t)Aα(t)) trB (Bα(t)ρB)

− 1

~2

∫ t

0

ds
∑
α

∑
β

[Aα(t)Aβ(s)ρIs(s) trB (Bα(t)Bβ(s)ρB)

− Aβ(s)ρIs(s)Aα(t) trB (Bβ(s)ρBBα(t))

− Aα(t)ρIs(s)Aβ(s) trB(Bα(t)ρBBB(s))

+ ρIs(s)Aβ(s)Aα(t) trB (ρBBβ(s)Bα(t))] .

(2.35)

Let us assume that

trB (Ba(t)ρB) = 0 , (2.36)

note that for any B operator we can add or subtract a constant times identity operator

to B and accordingly modify HS to have the same H consistent with equation 2.36.

Then, equation 2.35 can be written as

ρ̇Is(t) =− 1

~2

∫ t

0

ds
∑
α,β

[trB (Bα(t)Bβ(s)ρB) (Aα(t)Aβ(s)ρIs(s)− Aβ(s)ρIs(s)Aα(t))

+ trB (Bβ(B)Bα(t)ρIs) (ρIs(s)Aβ(s)Aα(t)− Aα(t)ρIs(s)Aβ(s))] .

(2.37)

8



Here the equation 2.37 is not a Markovian Master Equation which should be indepen-

dent of the previous states of the system since it depends on the initial state at t = 0;

But if is assumed that the reservoir correlation functions,

trB (Bα(t)Bβ(s)ρB) = 〈Bα(t)Bβ(s)〉 , (2.38)

decay so rapidly that only the contribution around t is significant, then the limit at

t = 0 can be changed to limit at t = −∞ . And if−s+ t is substituted for s, equation

2.37 becomes;

ρ̇Is =
1

~2

∫ ∞
0

ds
∑
α,β

[trB(Bα(t)Bβ(t− s)ρB) (Aα(t)Aβ(t− s)ρIs(t)

−Aβ(t− s)ρIs(t)Aα(t)

+ trB(Bβ(t− s)Bα(t)ρB (ρIs(t)Aβ(t− s)Aα(t)− Aα(t)ρIs(t)Aβ(t− s))] .
(2.39)

Now, define

Aα(ω) =
∑

ε′−ε=~ω

π(ε)Aαπ (ε′) , (2.40)

where π(ε)’s are the projection operators for the states having energy ~ε. We can

consider ~ = 1 and Boltzmann constant k = 1 henceforth. It gives the results

eiHStAα(ω)e−iHSt = e−iωtAα(ω)

eiHStA†α(ω)e−iHSt = eiωtA†α(ω) ,
(2.41)

[HS, Aα(ω)] = −ωAα(ω)[
HS, A

†
α(ω)

]
= ωA†α(ω)

A†α(ω) = Aα(−ω) ,

(2.42)

Aβ(t− s) =
∑
ω

eiωse−iωtAβ(ω)

=
∑
ω

e−iωseiωtA†β(ω) ,
(2.43)

Aα(t) =
∑
ω′

eiω
′tA†α(ω′)

=
∑
ω′

e−iω
′tAα(ω′) .

(2.44)
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Substitute A(t) in equation 2.39 accordingly,

ρ̇Is(t) =
∑
ω′,ω

∑
α,β

ei(ω
′−ω)tΓαβ(ω)

(
Aβ(ω)ρIs(t)A

†
α (ω′)− A†α (ω′)Aβ(ω)ρIs(t)

)
+ ei(ω−ω

′)tΓβα(−ω)
(
Aα (ω′) ρIs(t)A

†
β(ω)− ρIs(t)A†β(ω)Aα (ω′)

)
,

(2.45)

where Γαβ is

Γαβ(ω) =

∫ ∞
0

dseiωs trB (Bα(t)Bβ(t− s)ρB) . (2.46)

The fact that ρB and HB commutes(since the bath is in a thermal state) and cyclic

rearrangements in Γαβ results in

trB
{
eiHBtBαe

−iHBteiHB(t−s)Bβe
−iHB(t−s)ρB

}
= trB {Bα(s)Bβ(0)ρB} . (2.47)

And, therefore,

ρ̇Is(t) =
∑
ω,ω′

∑
αβ

ei(ω−ω
′)tΓαβ(ω)

(
Aβ(ω)ρIs(t)A

†
α (ω′)− A†α (ω′)Aβ(ω)ρIs(t)

)
+ ei(ω−ω

′)tΓ∗αβ(ω)
(
Aα (ω′) ρIs(t)A

†
β(ω)− ρIs(t)A†β(ω)Aα (ω′)

)
.

(2.48)

Interchanging α and β for the second line does not change the equality,

ρ̇Is(t) =
∑
ω,ω′

∑
α,β

ei(ω−ω
′)tΓαβ(ω)

(
Aβ(ω)ρIs(t)A

†
α (ω′)− A†α (ω′)Aβ(ω)ρIs(t)

)
+ei(ω−ω

′)tΓ∗βα(ω)
(
Aβ (ω′) ρIs(t)A

†
α(ω)− ρIs(t)A†α(ω)Aβ (ω′)

)
.

(2.49)

The time scale for the intrinsic evolution of the system, τS is typically |ω′ − ω|−1. If

the relaxation time of the open system τR is large compared to the τS , the terms which

have ω 6= ω′ results in rapidly oscillating terms in the τR scale. Therefore they can be

neglected, and we are left with the terms in which ω = ω′. Rearranging terms

ρ̇Is(t) =
∑
α,β,ω

(
Γαβ(ω) + Γ∗βα(ω)

)(
Aβ(ω)ρIs(t)A

†
α(ω)− 1

2
{A†α(ω)AB(ω), ρIs(t)}

)
−
(
Γαβ(ω)− Γ∗βα(ω)

) 1

2

[
A†α(ω)Aβ(ω), ρIs(t)

]
.

(2.50)

Eventually, equation 2.50 can be written as

ρ̇Is(t) =− i [HLS, ρIs(t)]

+
∑
α,β,ω

γαβ(ω)

(
Aβ(ω)ρIs(t)A

†
α(ω)− 1

2

{
A†α(ω)Aβ(ω), ρs(t)

})
,

(2.51)
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where

HLS =
∑
α,β,ω

~
2i

(Γαβ(ω)− Γαβ(ω))A†α(ω)Aβ(ω) , (2.52)

and

γαβ(ω) = Γαβ(ω) + Γβα(ω) . (2.53)

Now we need to find the Schrödinger picture evolution of the density matrix. Since

ρ = e−iHStρIse
iHSt , (2.54)

the time evolution of ρ becomes

ρ̇ = −iHSρ+ iρHS + e−iHStρ̇Ise
iHSt . (2.55)

And, since

[HS, A
†
α(ω)Aβ(ω)] = 0 , (2.56)

and

e−iHStA†α(ω)ρIsAβ(ω)eiHSt = A†α(ω)ρAβ(ω) , (2.57)

e−iHStAα(ω)ρIsA
†
β(ω)eiHSt = Aα(ω)ρA†β(ω) , (2.58)

we have

ρ̇s(t) =− i [HLS +HS, ρs(t)]

+
∑
α,β,ω

γαβ(ω)

(
Aβ(ω)ρs(t)A

†
α(ω)− 1

2

{
A†α(ω)Aβ(ω), ρs(t)

})
.

(2.59)

2.3 Master Equation for a Two-Level Atom in a Radiation Field

Since giving a physical example makes our assumptions clearer and concrete, the

coupling of a radiation field in free space, which is at a thermal state, with an electric

dipole of a two-level atom will simulate the reservoir and a two-level quantum system

coupling in the following sections. The Hamiltonian for radiation field is

HB =
∑
~k

∑
λ=1,2

ωkb
†
λ(
~k)bλ(~k) . (2.60)

It is possible to write the interaction Hamiltonian as

HI = − ~D · ~E , (2.61)

11



where ~E is the electric field operator and ~D is the dipole moment.

From [8],

~E = i
∑
~k

∑
λ=1,2

√
2πωk
V

~eλ(~k)
(
bλ(~k)− b†λ(~k)

)
, (2.62)

where
~k · ~eλ(~k) = 0

~eλ(~k) · ~eλ′(~k) = δλλ′
(2.63)

Since the expectation value of E is zero for a thermal bath, the approximation in

equation 2.36 is validated.

Electric field operator in interaction picture reads as

Eα(t) = ei
∑
k,λ ωkb

†
λ(~k)bλ(~k)ti

∑
~k,λ

√
2πωk
V

eαλ(~k)
(
bλ(~k

′)− b†λ(~k)
)
e−i

∑
k,λ ωkb

†
λ(~k)bλ(~k)t .

(2.64)

From the relations of

eiωkb
†btbe−iωkb

†bt = eiωkb
†bte−iωkbb

†tb = e−iωktb , (2.65)

eiωkb
†btb†e−iωkb

†bt = b†eiωkbb
†te−iωkb

†bt = eiωktb† , (2.66)

we have equation 2.64 as

Eα(t) = i
∑
~k,λ

√
2πωk
V

eαλ(~k)
(
e−iωktbλ(~k)− eiωktb†λ(~k)

)
. (2.67)

Then,

Γαβ =
∑

~k,~k′,λ,λ′

2π

V

√
ωkωk′e

α
λ(~k)eβλ′(

~k′)

∫ ∞
0

dseiωs [ − e−iωks
〈
bλ(~k)bλ′(~k′)

〉
+ e−iωks

〈
bλ(~k)b†λ′(

~k′)
〉

+ e+iωks
〈
b†λ(
~k)bλ′(~k′)

〉
− e+iωks

〈
b†λ(
~k)b†λ′(

~k′)
〉
.

(2.68)

Here we need to find the expectation values. Since we used thermal reservoirs through-

out the thesis, the density matrix of the baths are those of thermal state’s

ρB =
1

Z
e−βHB , (2.69)
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where Z is the partition function.

Z = trB
(
e−βHB

)
(2.70)

From [9],

ρB =
∏
~k,λ

(
1− e−βωk

)
e−βωkb

†
λ(~k)bλ(~k) . (2.71)

Therefore, 〈
bλ(~k)bλ′(~k

′)
〉

= trB

(
bλ(~k)bλ′(~k′)ρ0

)
= 0 (2.72)

and 〈
b†λ(
~k)bλ′(~k

′)
〉

=δλλ′δ~k~k′
(
1− e−βωk

) ∞∑
n=0

ne−βωkn

=δλλ′δ~k~k′N(ωk) ,

(2.73)

where

N(ωk) =
e−βωk

1− e−βωk
. (2.74)

Then, 〈
bλ(~k)bλ′(~k′)

〉
= δλλ′δ~k~k′ (1 +N(ωk)) , (2.75)

and

Γαβ(ω) =
∑
~k,λ

2π

V
ωke

α
λ(~k)eβλ(~k)

∫ ∞
0

ds
[
ei(ω+ωk)sN (ωk) + ei(ω−ωk)s (N (ωk) + 1)

]
.

(2.76)

It is possible to approximate the summation over ~k as an integral∑
~k

=

∫
d3n =

∫
V

(2π)3
d3k , (2.77)

and ∫
d3k =

1

c3

∫ ∞
0

ω2
kdωk

∫
dΩ . (2.78)

The integrand for the solid angle integration is the vectors under λ summation∑
λ

eαλ(~k)eβλ(~k) = δαβ −
kαkβ
k2

, (2.79)

Therefore, it reads as ∫
dΩ
(
δαβ − cos2 θ

)
=

8π

3
δαβ . (2.80)
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Eventually,

Γαβ(ω) =
2δαβ
3πc3

∫ ∞
0

dωkω
3
k

[
N (ωk)

∫ ∞
0

ei(ω+ωk)sds

+ (N(ω) + 1)

∫ ∞
0

e−i(ωk−ω)sds ,

(2.81)

and

γαβ(ω) =
2δαβ
3πc3

∫ ∞
0

dωkω
3
k

[
N (ωk)

∫ ∞
−∞

ei(ω+ωk)sds

+ (N (ωk) + 1)

∫ ∞
−∞

ei(ω−ωk)sds .

(2.82)

The integrals are Dirac delta functions. Therefore,

For ω > 0 γαβ =δαβ
4ω3

3c3
(N(ω) + 1)

For ω < 0 γαβ =δαβ
4ω3

3c3
N(ω)

=δαβ
4|ω|3

3c3
(N(|ω|) + 1) .

(2.83)

And the master equation reads as

ρ̇s(t) = − i
~

[HLS, ρs(t)] +D (ρs(t)) , (2.84)

where D(ρs(t)) is called the dissipator,

D (ρs(t)) =
∑
ω>0

4ω3

3c3
(1 +N(ω))

[
Dα(ω)ρs(t)D

†
α(ω)− 1

2

{
D†α(ω)Dα(ω), ρs(t)

}]
+
∑
ω>0

4ω3

3c3
N(ω)

[
D†α(ω)ρs(t)Dα(ω)− 1

2

{
Dα(ω)D†α(ω), ρs(t)

}]
.

(2.85)

2.4 Master equation for the harmonic oscillator

Here the Hamiltonians read as

HI =
∑
n

gn
(
a+ a†

) (
bn + b†n

)
HS = ωa†a

HB =
∑
n

Ωnb
†
nbn ,

(2.86)
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where n is the number of oscillators in the bath. The equation 2.40 becomes

A(ω) =
∑

ε′−ε=~ω

π(ε)(a+ a†)π (ε′) . (2.87)

When the ω is larger than zero, the creation operator gives zero therefore

A(ω) =
∑

ε′−ε=~ω

π(ε)aπ (ε′) = a . (2.88)

When the ω is less than zero, the annihilation operator gives zero and

A(ω) =
∑

ε′−ε=ω

π(ε)a†π (ε′) = a† . (2.89)

Then, following the previous calculation’s footsteps, we obtain

ρ̇s =γ (N1 + 1)

[
asρsa

† − 1

2
a†aρs −

1

2
ρsa
†a

]
γ (N1)

[
a†ρsa−

1

2
aa†ρs −

1

2
ρsaa

†
]
,

(2.90)

where

γ =
∑
n

g2
n

∫ ∞
−∞

ei(ω−Ωn)sds . (2.91)

2.5 Heat transfer expression

Now we find the heat transfer expression. We formulate the energy transfer rate as

the rate of change of the expectation value of the system Hamiltonian due to the

interaction with the bath,

q =
d

dt
〈Hs〉 = tr (ρ̇sHS) . (2.92)

After this point, we will not include [HLS + HS, ρs(t)] in our calculations since the

dynamics it generated do not contribute to the energy transfer because

[HS, HLS] = 0 , (2.93)

and

tr([HLS +HS, ρs]HS) = tr([HS, HS +HLS]ρs) = 0 . (2.94)
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CHAPTER 3

TWO-LEVEL SYSTEM

Now we will investigate the heat transfer rate for a two-level quantum system as the

coupler between the reservoirs. Here we first derive the Lindblad master equation for

the system and two reservoirs coupling. Then we will find the steady-state case, and

from the steady-state density matrix and the master equation, we will find the heat

transfer rate and the thermal rectification characteristics.

Figure 3.1: Contact between the reservoirs. L corresponds to the left reservoir, R

corresponds to the right reservoir, and S is the two-level system.

3.1 Master equation

The coupling is

HI =
∑
α,λ

~Dα · gλ ~Eα,λ . (3.1)

α’s are the indices for three dimensions, λ’s are the indices for the reservoirs, and

there are only two possible ω values that correspond to the raising and lowering ener-

gies of the two-level system. For ω’s positive value,

D(ω) = |g〉〈g|Dα|e〉〈e| = 〈g|Dα|e〉σ− , (3.2)
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where |g〉 is the ground state and |e〉 is the excited state for the two-level atom. Sub-

stituting equation 3.1 in equation 2.85,

ρ̇s(t) =
4ω3

0

3c3

(
g2

1(1 +N1) + g2
2(1 +N2)

)∑
α

|〈g |Dα| e〉|2 [σ−ρs(t)σ+

− 1

2
σ+σ−ρs(t)−

1

2
ρs(t)σ+σ−]

+
4ω3

0

3c3
(g2

1N1 + g2
2N2)

∑
α

|〈g |Dα| e〉|2 [σ+ρs(t)σ−

− 1

2
σ−σ+ρs(t)−

1

2
ρs(t)σ−σ+] .

(3.3)

We will not be interested in the off-diagonal terms of ρs in the energy basis since they

will not contribute to the energy calculation of the system, therefore the energy trans-

fer rate. This reduces the unknowns to two from four. The corresponding equations

for the steady-state case are the following(
g2

1(1 +N1) + g2
2(1 +N2)

)
ρ11 − (g2

1N1 + g2
2N2)ρ00 = 0

(g2
1N1 + g2

2N2)ρ00 −
(
g2

1(1 +N1) + g2
2(1 +N2)

)
ρ11 = 0 ,

(3.4)

where ρ0 and ρ1 are the diagonal elements of the density matrix corresponding to

the ground and excited-state probabilities. These are two dependent equations in two

variables. We will first find the steady-state solution to find the heat transfer rate. To

solve the equations, we will need an extra constraint of normalization,

ρ00 + ρ11 = 1 . (3.5)

The results are the following

ρ00 =
g2

1(1 +N1) + g2
2(1 +N2)

g2
1(1 + 2N1) + g2

2(1 + 2N2)
, (3.6)

ρ11 =
g2

1N1 + g2
2N2

g2
1(1 + 2N1) + g2

2(1 + 2N2)
. (3.7)

Here one might check the temperature of the two-level system from the probabilities

in equations 3.6 and 3.7,

T = −ω ln
g2

1N1 + g2
2N2

g2
1(1 +N1) + g2

2(1 +N2)
. (3.8)

Here, if we denote

T2 = T1 + ∆T , (3.9)
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then, if we consider T in equation 3.8 as T (T1, T2) and we expand T (T1, T2) for T2

around T1 expands as

T = T1 +
g2

2

g2
1 + g2

2

∆T + ... , (3.10)

in which the first two terms are the expected classical results. Steady-state solution is

the result of canceling effects of the two reservoirs on the system. Now we will inves-

tigate the heat transfer rate. It can be found by considering a single reservoir’s effect

on the system. The reservoir causes a change in the energy level density changes the

expectation value of the system’s energy. Since it will be in the steady-state case, the

other reservoir will have the opposite effect on the densities. Therefore, there will be

a net flow rate of energy from one reservoir to another. The heat flow rate from the

first reservoir becomes

q = tr (D1 (ρs,steady)Hs) , (3.11)

where ρsteady is the density matrix at steady-state D1(ρsteady) is the dissipator in the

master equation resulting from the contact with the first reservoir. Then the heat

transfer rate becomes

q = ω(
d

dt
ρ11,steady)1stbath , (3.12)

where 1stbath near the parenthesis indicates the rate of change due to the first reser-

voir only The master equation involving a single reservoir results in

ρ̇00 = γg2
1(1 +N1)ρ11 − γg2

1N1ρ00

ρ̇11 = γg2
1N1ρ00 − γg2

1(1 +N1)ρ11 ,
(3.13)

where γ is a constant

γ =
4ω3

0

3c3

∑
α

|〈g |Dα| e〉|2 (3.14)

Here, we assumed the ground state has zero energy, substitute the steady-state solu-

tion, and find its effect on the energy change rate of the system,

q = ωγg2
1g

2
2

(N1 −N2)

g2
1(1 + 2N1) + g2

2(1 + 2N2)
. (3.15)

One can check the heat flow for the second reservoir as well,

ρ̇00 = γg2
2(1 +N2)ρ11 − γg2

2N2ρ00

ρ̇11 = γg2
2N2ρ00 − γg2

2(1 +N2)ρ11 .
(3.16)
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And the heat transfer rate becomes

q = ωγg2
1g

2
2

(N2 −N1)

g2
1(1 + 2N1) + g2

2(1 + 2N2)
. (3.17)

It is the heat flow of the first reservoir with an additional minus sign which should

be the case since the heat flows from one reservoir to the other reservoir. Here, the

effects of reservoirs on the system cancel each other and result in a net heat transfer

rate between the reservoirs with a steady-state system

3.2 Rectification behavior

To analyze the rectification behaviour, we need to express it mathematically. There

are more than one ways to express it. We will use

R =
Q (T1, T2) +Q (T2, T1)

Q (T1, T2)−Q (T2, T1)
, (3.18)

where Q (T1, T2) corresponds to the heat flow from the first reservoir when the first

reservoir is at temperature T1 and the second reservoir is at T2. Here R takes values

between +1 and −1. The limiting values correspond to maximum rectification. The

value 0 will be the no rectification case when the heat flow rate changes sign when the

temperatures are exchanged. Note that the amount of rectification is actually charac-

terized by the absolute value of R. It can have its negative value if one considers the

other reservoir as the first reservoir.

When the system is a two-level quantum system, and when the coupling constants

are equal there is left-right exchange symmetry in the system. If the temperatures

of the reservoirs are exchanged, overall coupling does not change. Therefore the

rectification will be zero. However, if the coupling constants are different, it results

in a non-zero rectification.

In figure 3.2 it can be seen from the heat flow rates that there is a rectification behavior

with the two-level system as a coupling between two reservoirs.

Now we will investigate the rectification behavior to find how to obtain the opti-

mal conditions which maximize the thermal rectification. There are five degrees of

freedom in the system, which are the temperatures of the reservoirs, the coupling
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Figure 3.2: Heat transfer rates in the case g1 = 5, g2 = 1.

constants, and the energy difference between the two levels. We first investigate the

lower temperature’s effect on the rectification with a constant temperature for the hot

reservoir.

Figure 3.3: Rectification in the case g1 = 5, g2 = 1.

The rectification is reduced with the increasing temperature of the colder reservoir

and increased with the increasing temperature of the hot reservoir, as can be seen

in figure 3.3. Therefore having the colder bath as cold as possible and having the

reservoir as hot as possible will increase the thermal rectification.
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Now we investigate the coupling constant’s effect on the rectification. However,

we just investigate the effect of their ratio but not heir individual values since their

strength changes the heat transfer rate equally on both directions. Here, as the ratio

increases, the rectification increases too as expected since it increases the asymmetric

character of the coupling. To maximize the rectification, one should have the most

asymmetric condition possible in the coupling constants.

Figure 3.4: Rectification in the case T1/ω = 1

The last variable is the excitation energy of the two-level system. The effect can be

seen in figure 3.5. As the energy increases, the rectification is reduced.
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Figure 3.5: Rectification in the case g1 = 5, g2 = 1
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CHAPTER 4

TWO TWO-LEVEL SYSTEMS

Now we investigate a system consisting of a two two-level system as a contact be-

tween reservoirs. The left reservoir is in contact with the left two-level system, and

the right reservoir is in contact with the right two-level system only while the two-

level systems interact.

Figure 4.1: Contact between the reservoirs. L corresponds to the left reservoir, R

corresponds to the right reservoir, SL is the left two-level system, and SR is the right

two-level system.

4.1 Ising Coupling

4.1.1 Theory

The Hamiltonian of the whole system is

H = HS +HL +HR +
∑
i

gL,i(a
†
L,i + aL,i)σ

L
x +

∑
j

gR,j(a
†
R,j + aR,j)σ

R
x , (4.1)

where

HS =
ωL
2
σLz +

ωR
2
σRz +

ωLR
2
σLz σ

R
z , (4.2)

and L, R denotes the left and right reservoirs. The coupling between the two-level

atoms is called the Ising coupling. Here, we assumed the coupling constants are

25



equal for both reservoirs since the rectification we will investigate is not due to the

asymmetric coupling constants. Then

ρ̇s(t) =γ(ω)(1 +NL(ω))[σL−ρs(t)σ
L
+ −

1

2
σL+σ

L
−ρs(t)−

1

2
ρs(t)σ

L
+σ

L
−]

+ γ(ω)NL(ω)[σL+ρs(t)σ
L
− −

1

2
σL−σ

L
+ρs(t)−

1

2
ρs(t)σ

L
−σ

L
+]

+ γ(ω)(1 +NR(ω))[σR−ρs(t)σ
R
+ −

1

2
σR+σ

R
−ρs(t)−

1

2
ρs(t)σ

R
+σ

R
−]

+ γ(ω)NR(ω)[σR+ρs(t)σ
R
− −

1

2
σR−σ

R
+ρs(t)−

1

2
ρs(t)σ

R
−σ

R
+] .

(4.3)

Note that γ is a function of ω here since there is more than one transition energy. Let

us denote the eigenkets of the system as

|↑↑〉 → |ψ1〉 , (4.4)

|↑↓〉 → |ψ2〉 , (4.5)

|↓↑〉 → |ψ3〉 , (4.6)

|↓↓〉 → |ψ4〉 . (4.7)

Now we consider our bath is an Ohmic bath[1] in which

γ(ω) = γ0ω . (4.8)

Then, the Lindbladian results in the following equations for the diagonal elements of

the density matrix in energy basis at the steady state;

[− (E1 − E2) (N12 + 1)− (E1 − E3) (N13 + 1)] ρ11 + (E1 − E2)N12ρ22

+ (E1 − E3)N13ρ33 = 0
(4.9)

(E1 − E2) (N12 + 1) ρ11 + [− (E1 − E2)N12 − (E2 − E4) (N24 + 1)] ρ22

+ (E2 − E4)N24ρ44 = 0
(4.10)

(E1 − E3) (N13 + 1) ρ11 + [− (E4 − E3)N43 − (E1 − E3)N13ρ33

+ (E4 − E3) (N43 + 1) ρ44 = 0
(4.11)
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(E2 − E4) (N24 + 1) ρ22 + (E4 − E3)N43ρ33

+ [− (E4 − E3) (N43 + 1)− (E2 − E4)N24] ρ44 = 0 ,
(4.12)

where

Nij =
1

eβα(Ei−Ej) − 1
, (4.13)

and alpha denotes the corresponding reservoir which induces the level changes in the

system. The equations combined with the normalization of the density matrix has a

unique solution whose exact expression can be found in [2].

The heat flow of the right reservoir is

q = γ0 (E1 − E2) [(N12 + 1) ρ11 −N12ρ22] (E1 − E2 + E4 − E3) . (4.14)

4.1.2 Behaviour

The probabilities’ flow among the energy eigenstates forms a loop and each flow

between two eigenstates is done by a specific reservoir. This loop can be arranged

like in figure 4.1 so that it involves an excitation done by the cold reservoir, which

acts as an impediment in the flow. However, when the baths are interchanged, there

will be no excitation done by the cold reservoir but a deexcitation by the hot reservoir,

which always has a finite rate at any temperature. If you arrange the energies like in

figure 4.2 and require an excitement by the cold reservoir in the loop, this will cause

a significant rectification effect since the opposite loop does not require such a thing.

If you arrange the levels so that the cold reservoir’s excitation becomes a decay and

all transition have the same energy as in figure 4.4, then the system acts as a two-level

system, and the rectification becomes zero with equal coupling strengths as expected.

The behavior of rectification in figure 4.5 indicates the rectification is done by the

cold reservoir’s excitation, like in figure 4.2.

4.2 Heisenberg Coupling

Now we will consider the coupler consists of two-level atoms coupled by the Heisen-

berg coupling.
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Figure 4.2: Transitions among the energy levels. The sequence represents the energy

levels. The blue arrows correspond to the excitations or deexcitations done by the left

reservoir, and the red arrows are the ones done by the right reservoir. The arrows on

the left represent the heat flow from the left bath to the right bath, while the arrows

on the right are the flow from the right bath to the left bath.

Figure 4.3: Heat transfer rate in the case ωL = 11ωLR, ωR = 0
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Figure 4.4: Transitions among the energy levels. The sequence represents the energy

levels. The blue arrows correspond to the excitations or decays done by the left reser-

voir, and the red arrows are the ones done by the right reservoir. The arrows on the

left represent the heat flow from the left bath to the right bath, while the arrows on the

right are the flow from the right bath to the left bath.

Figure 4.5: Rectification in the case ωR = 0, TL = ωLR and TR = 2ωLR. ωL = 0

corresponds to the figure 4.4

4.2.1 Theory

Hamiltonian for the whole system is

H = HS +HL +HR +
∑
i

(a†L,i + aL,i)σ
L
x +

∑
j

(a†R,j + aR,j)σ
R
x , (4.15)
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where

HS =
ωL
2
σLz +

ωR
2
σRz +

ωLR
2
σLxσ

R
x +

ωLR
2
σLy σ

R
y +

ωLR
2
σLz σ

R
z , (4.16)

where ωL, ωR, and ωLR are real. First we obtain the energy eigenstates of the system.

If we express the coupling operators in the energy basis, we get

σLx =



0 0 −
a+b
c√

1+(a+b
c

)2
−

a−b
c√

1+(a−b
c

)2

0 0 1√
1+(a+b

c
)2

1√
1+(a−b

c
)2

−
a+b
c√

1+(a+b
c

)2
1√

1+(a+b
c

)2
0 0

−
a−b
c√

1+(a−b
c

)2
1√

1+(a+b
c

)2
0 0


, (4.17)

and

σRx =



0 0 1√
1+(a+b

c
)2

1√
1+(a−b

c
)2

0 0 −
a+b
c√

1+(a+b
c

)2
−

a−b
c√

1+(a−b
c

)2

1√
1+(a+b

c
)2
−

a+b
c√

1+(a+b
c

)2
0 0

1√
1+(a+b

c
)2
−

a−b
c√

1+(a−b
c

)2
0 0


, (4.18)

where

a = ωR − ωL , (4.19)

c = 2ωLR , (4.20)

b =
√
a2 + c2 . (4.21)

4.2.2 Behavior

The matrices mean that both left and right reservoirs are responsible for the transitions

1 ↔ 3, 3 ↔ 2, 2 ↔ 4, and 4 ↔ 1. The transitions in the loop can be done by

both reservoirs. This prevents an impediment like in the Ising coupling case in the

energy flow since there is no excitation done by the cold reservoir only. Therefore the

rectification is greatly reduced for similar parameters to figure 4.3 as can be seen in

figure 4.6.
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Figure 4.6: Heat transfer rates in the case ωL = 11ωLR, ωR = 0

We can express our system Hamiltonian as

HS =
ωL
2
σLz +

ωR
2
σRz +

ωXY
2
σLxσ

R
x +

ωXY
2
σLy σ

R
y +

ωLR
2
σLz σ

R
z , (4.22)

which is called the XXZ model. The case ωXY = 0 is the Ising coupling, and ωXY =

ωLR is the Heisenberg coupling. Then we can plot the rectification as a function of

ωXY in figure 4.7. It can be seen how the rectification is reduced with increasing ωXY

term.
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Figure 4.7: Rectification in the case ωL = 11ωLR, ωR = 0, TL = ωLR and TR = 2ωLR
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CHAPTER 5

HARMONIC OSCILLATOR

Now we will investigate the thermal rectification behavior of a harmonic oscillator as

the coupler between the reservoirs.

Figure 5.1: Contact between the reservoirs. L corresponds to the left reservoir, R

corresponds to the right reservoir, and S is the harmonic oscillator.

5.1 Master equation

Hamiltonian of the whole system is

H =ωa†a+
∑
x

Ω1b
†
xbx +

∑
y

Ω2b
†
yby

+
∑
x

gx
(
a† + a

) (
b†x + bx

)
+
∑
y

gy
(
a† + a

) (
b†y + by

) . (5.1)
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With two reservoirs, equation 2.90 becomes

ρ̇s =γ1 (N1 + 1)

[
aρsa

† − 1

2
a†aρs −

1

2
ρsa
†a

]
+ γ1 (N1)

[
a†ρsa−

1

2
aa†ρs −

1

2
ρsaa

†
]

+ γ2 (N2 + 1)

[
aρsa

† − 1

2
a†aρs −

1

2
ρsa
†a

]
+ γ2 (N2)

[
a†ρsa−

1

2
aa†ρs −

1

2
ρsaa

†
]
.

(5.2)

There are infinitely many elements in the diagonal terms of the density matrix. How-

ever, we look for a general solution. For the nth element of the density matrix, we

have the following relation.

ρ̇n =γ1 (N1 + 1) (n+ 1)ρn+1 − γ1 (N1 + 1)nρn

+ γ1N1nρn−1 − γ1N1(n+ 1)ρn

+ γ2 (N2 + 1) (n+ 1)ρn+1 − γ2 (N2 + 1)nρn

+ γ2N2nρn−1 − γ2N2(n+ 1)ρn .

(5.3)

When we check for the n = 0, we see the following relation.

ρ̇0 =γ1 (N1 + 1) ρ1 − γ1N1ρ0

+ γ2 (N2 + 1) ρ1 − γ2N2ρ0 ,
(5.4)

which results in

ρ1 =
γ1N1 + γ2N2

γ1(N1 + 1) + γ2(N2 + 1)
ρ0 , (5.5)

and the general relation becomes

ρn =
γ1N1 + γ2N2

γ1(N1 + 1) + γ2(N2 + 1)
ρn−1 . (5.6)

Then the general solution for ρn is

ρn = rnρ0 , (5.7)

where

r =
γ1N1 + γ2N2

γ1(N1 + 1) + γ2(N2 + 1)
. (5.8)

From the normalization of the density matrix,

ρn = rn(1− r) . (5.9)
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Then, from one reservoir’s dissipator

ρ̇n =γ1 (N1 + 1) (n+ 1)ρn+1 − γ1 (N1 + 1)nρn

+ γ1N1nρn−1 − γ1N1(n+ 1)ρn .
(5.10)

Then, the energy flow becomes

q = −
∞∑
n=0

ωγ1(1− r)[(N1 + 1)(n+ 1)nrn+1

− (N + 1)n2rn +N1n
2rn−1 −N1(n+ 1)nrn] .

(5.11)

And, the flow becomes

q = ω
γ1γ2

γ1 + γ2

(N1 −N2) . (5.12)

This is an interesting situation. If one looks at the equation, it is symmetric with

respect to coupling constants. If one interchanges them, the result is not affected,

which means zero rectification. We need further analysis without the approximations

of our Lindblad approach to check the rectification is precisely zero or resulted from

our approximations.

5.2 Exact solution

We consider the special case when the composite system is formed from linear oscil-

lators. In that case, it can be shown that the rectification is always zero. Below we are

going to prove that this is the case. The Hamiltonian can be written in the form

H =
∑
ij

~Wijb
†
ibj , (5.13)

where

Wij = W ∗
ij . (5.14)

Since W is a Hermitian matrix, we can diagonalize it

Wij =
∑
α

UiαωαŪjα , (5.15)

and obtain the Hamiltonian as

H =
∑
α

~ωαc†αcα , (5.16)
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where
c†α =

∑
i

Uiαb
†
i

cα =
∑
j

Ūjαbj .
(5.17)

Now, define Nij as

Nij(t) =
〈
b†jbi

〉
t

=
∑
α,β

Ūjα
〈
c†αcβ

〉
t
Uiβ . (5.18)

Then, from the Heisenberg picture c’s

cα(t) = e−iωαtcα c†α(t) = eiωαtc†α , (5.19)

we have

Nij(t) = Ūjαe
iωαt−iωβt

〈
c†αcβ

〉
0
Uiβ . (5.20)

From 〈
c†αcβ

〉
0

= Ukα

〈
b†kbl

〉
0
Ūlβ , (5.21)

Nij becomes

Nij(t) =
∑
α,β,k,l

Ūjαe
iωαtUkαNkl(0)Uiβe

−iωptŪlβ . (5.22)

By using the relation

eiωαt =
(
eiΩt
)
αα

, (5.23)

where Ω matrix is the diagonal matrix in which

Ωαα = ωα , (5.24)

Nij can be written as a multiplication of matrices

Nij(t) =
(
Ue−iΩtU †

)
il
Nlk(0)

(
UeiΩtU †

)
kj
. (5.25)

Since

W = UΩU+ , (5.26)

we can write

Nij(t) =
(
e−iWt

)
il
N`k(0)

(
eiWt

)
kj
. (5.27)

Eventually,

N(t) = e−iWtN(0)eiWt . (5.28)
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We are looking for the heat transfer rate expression, which is the rate of change in the

expectation value of one of the reservoirs,

q =
d 〈HL〉
dt

=
−i
~
〈[H,HLL]〉 , (5.29)

where Hamiltonian is

H = HLL +HRR +HSS +HSL +HLS +HRS +HSR . (5.30)

The only terms which do not commute with HLL are HSL and HLS

q =
i

~
〈[HLL, HSL +HLS]〉 , (5.31)

where

HLL =
∑
x

~ωLx b†xbx , (5.32)

HSL =
∑
ix

GL
ixb
†
ibx , (5.33)

HLS = H†SL . (5.34)

From the relations [
b†xbx, b

†
ibx

]
= −b†ibx[

bxbx, b
†
xbi
]

= b†xbi ,
(5.35)

the heat flow becomes

q =
i

~
∑
ix

−GL
ixω

L
x

〈
b†ibx

〉
+ h.c. , (5.36)

where h.c. corresponds to Hermitian conjugate. Now we have

q =
−i
~

tr
{(
GLωL

)
N(t)

}
. (5.37)

When we substitute equation 5.28 for N(t)

q =
−i
~

tr
{
eiWt

(
GLωL

)
e−iWtN(0)

}
. (5.38)

Here the information of temperatures is given in the initial reservoirs’ expectation

values of the energy of the individual oscillators, in other words, inN(0) terms for the

corresponding reservoir’s corresponding oscillators. Since there are separate terms

for separate reservoirs, the terms that the temperatures appear are separable,

q = fL (TL) + gR (TR) . (5.39)
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If the temperatures are the same, we know that the heat flow is zero, therefore

fL(x) = −gR(x) . (5.40)

Then

q = fL (TL)− fL (TR) , (5.41)

which makes the thermal rectification zero. Note that there will be a transient regime

after the contact is initiated. However, we are interested in the regime where there is

steady heat flow from one reservoir to the other, and our equation still governs that

part of the regime as well as the transient part.

5.3 Two harmonic oscillators

Now we consider a coupling consists of two harmonic oscillators where each oscilla-

tor is coupled to only one reservoir and the the other oscillator.

Figure 5.2: Contact between the reservoirs. L corresponds to the left reservoir, R

corresponds to the right reservoir, SL is the left harmonic oscillator, and SR is the

right harmonic oscillator.

When the Hamiltonian of the system without the reservoirs is in the form

H = ω1a
†a + ω2b

†b+ ω12a
†b+ ω21b

†a , (5.42)

where

ω∗12 = ω21 . (5.43)

As shown in [10] it can be written in the form

H =
(
a† b†

) ω1 ω12

ω21 ω2

 a

b

 , (5.44)
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where the ω matrix is a Hermitian matrix. That means we can diagonalize it. The

diagonalized form is

H = Ω+c
+
1 c1 + Ω−c

†
2c2 , (5.45)

where

Ω± =
(ω1 + ω2)±

√
(ω1 − ω2)2 + 4ω12ω21

2
, (5.46)

and

c1 = a cos(α)− b sin(α) , (5.47)

c2 = a sin(α) + b cos(α) , (5.48)

where

tan(α) =
2ω21

(ω1 − ω2)−
√

4ω1ω2 + (ω1 − ω2)2
, (5.49)

and cα are the annihilation operators of the new oscillators

When one considers the couplings between the reservoirs and the system as in the

previous section, they become

(a† + a) = cos(α)(c†1 + c1) + sin(α)(c†2 + c2) , (5.50)

(b† + b) = − sin(α)(c†1 + c1) + cos(α)(c†2 + c2) . (5.51)

We have two independent harmonic oscillators, each coupled to both reservoirs with

Figure 5.3: Contact between the reservoirs. L corresponds to the left reservoir, R

corresponds to the right reservoir, S1 is the first decoupled harmonic oscillator and S2

is the second.

distinct coupling constants. From chapter 4, we know how an oscillator results in a

non-rectifying coupling, and therefore, we have zero rectification again with a double

harmonic oscillator case
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CHAPTER 6

CONCLUSION

Thermal rectification behaviors of some small quantum systems which are used as a

contact between reservoirs are investigated.

If the contact between reservoirs is a two-level system and the coupling constants

with reservoirs are different, rectification occurs. It is shown that the rectification is

optimized when the transition energy of the two-level atom is low, higher temperature

is as high as possible, lower temperature is low as possible, and the coupling constants

are as asymmetric as possible. Note that, higher rectification does not guarantee

higher heat flow rates. Lower coupling constants and transitions energies means lower

heat transfer rate. They should be optimized.

If the contact is two two-level systems, each one is in contact with a different reservoir

and the other two level system, a much higher rectification than a single two-level sys-

tem can be obtained with the appropriate parameters. When the interaction between

the two-level systems is through the Ising coupling, the energy states of the double

system are the same states which single reservoirs’ coupling operators cause shifts.

This causes in the loop of the transitions to transfer energy from one reservoir to the

other, individual transitions are done by particular reservoirs. Therefore, by arranging

the parameters, one can require a high energy excitation done by the cold reservoir

and create an impediment in the loop. Note that this excitation becomes a high en-

ergy decay done by the hot reservoir, which always has a finite rate. Therefore a

rectification effect is obtained. As the excitation energy goes higher, the rectification

effect increases. Other energy levels should be optimized for the ideal heat transfer

rate. If the coupling is Heisenberg coupling both reservoirs are responsible for all the

transitions. Therefore, the rectification effect is greatly reduced.
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If a harmonic oscillator is used as a contact, it is shown that there is no rectification

effect even though there are asymmetric coupling constants. It is checked that whether

it is a result caused by the approximations we did to obtain the Lindblad Master

equation. However, without the approximations, we were able to show that there

should be zero rectification since we were able to obtain the heat transfer rate as two

separate functions of the temperatures of the reservoirs.

If the contact is a double harmonic oscillator, each one in contact with a different

reservoir and the other oscillator system again results in a zero rectification effect

since we can show that this coupling is equivalent to two independent harmonic os-

cillators each in contact with both reservoirs.
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